TPS523 600V半桥栅极驱动器

1 系统介绍

1.1 概述

TPS523 是高压、高速半桥栅极驱动器, 能够驱动 N 型功率 MOSFET 和 IGBT。

TPS523 内置 V_{CC} 欠压(UVLO)保护功能, 防止功率管在过低的电压下工作。

TPS523 内置防直通保护和死区时间,防止功率管发生直通,有效防止半桥功率器件损坏。

1.2 封装

SOP8

1.3 产品特点

- 悬浮绝对电压+600V
- 电源电压范围: 10V ~ 20V
- 3.3V/5V输入逻辑兼容
- Vcc欠压保护(UVLO)
- 输出与输入同相
- 输入防直通
- 内置死区时间
- 高低端通道匹配
- 符合RoHS

1.4 应用场景

- 电机驱动
- DC-DC 转换器
- DC-AC 逆变器

V1.1

1

1.5 典型应用电路

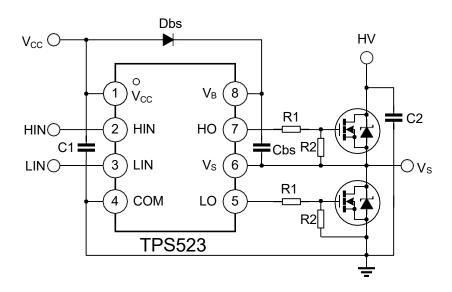


图 1-1 TPS523 典型应用电路

C1: 电源滤波电容,可选择 10 μF, 尽可能的靠近芯片管脚。

C2: 高压供电电源滤波电容,容值根据电路应用而定。

R1: 栅极驱动电阻,阻值根据被驱动器件而定,推荐 $33 \Omega^{-100} \Omega$ 。

R2: MOS 栅极与源极电阻,推荐 $10K\Omega^{-3}3k\Omega$ 。

Dbs: 自举二极管,应选择高反向击穿电压(>600V)、恢复时间尽量短的二极管。

Cbs: 自举电容,应选择陶瓷电容或钽电容,最小容值可按以下式子计算:

其中: Qg 为高侧功率器件的栅极电荷;

Qperiod 为每个周期中电平转换电路的电荷要求,约为 10nC;

Ibs(static)为高侧驱动电路的静态电流;

Ibs(leak)为自举电容的漏电流;

f 为电路工作频率;

Vcc 为低侧供电电压;

V_F为自举二极管的正向导通压降;

Vds(L)为低侧功率器件的导通压降。

注:以上线路及参数仅供参考,实际的应用电路根据实测结果设定参数。

V1.1 1

1.6 功能框图

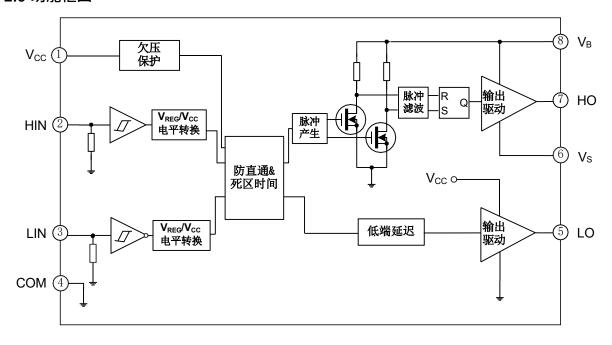
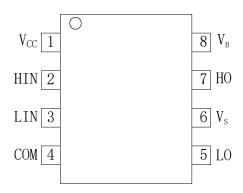
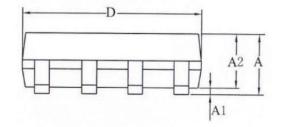


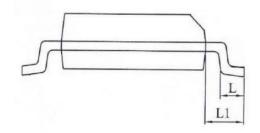
图 1-2 TPS523 功能框图

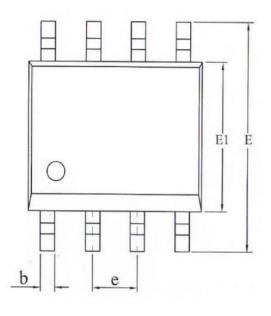
1.7 引脚定义

1.7.1 TPS523 引脚图




图 1-3 TPS523 引脚图


1.7.2 TPS523 引脚列表


表 1-1 TPS523 引脚列表

引脚号	引脚名称	引脚描述
1	V_{CC}	低侧供电电压
2	HIN	高侧输入
3	LIN	低侧输入
4	COM	接地
5	LO	低侧输出
6	V_{S}	高侧浮动偏移电压
7	НО	高侧输出
8	$ m V_{B}$	高侧浮动绝对电压

2 封装信息

	SOI	28			
SYMBOL	MILLIMETER				
STMBOL	MIN	NOM	MAX		
Α	1.45		1.7		
A1	0.05		0.25		
A2	1.3		1.6		
E	5.8	6	6.2		
D	4.7	4.9	5.1		
E1	3.8	3.9	4		
L1		1.05			
L	0.4		0.8		
e		1.27			
b	0.33		0.51		

图 2-1 TPS523 SOP8 封装信息图

产品名称	封装形式	订购型号	包装方式	数量
TPS523	SOP8	TPS523	卷带	3000

3 电气特性

3.1 绝对最大额定值

表 3-1 绝对最大额定值

(除非特殊说明,所有管脚均以COM 作为参考点)

参数	符号	范围	单位
高侧浮动绝对电压	V_{B}	-0.3 [~] 625	V
高侧浮动偏移电压	$V_{\rm S}$	$V_B-25 \sim V_B + 0.3$	V
高侧输出电压	$ m V_{HO}$	V_S -0.3 $\sim V_B + 0.3$	V
低侧供电电压	V_{CC}	-0.3 [~] 25	V
低侧输出电压	V_{LO}	$-0.5 \sim V_{CC} + 0.3$	V
逻辑输入电压(HIN, LIN)	V_{IN}	-0.3 ~ 6.5	V
偏移电压压摆率范围	dV _S /dt	≤ 50	V/ns
功率耗散@TA≤ 25℃	P_D	≤ 0.625	W
结对环境的热阻	R_{thJA}	≤ 200	°C/W
结温范围	$T_{\rm j}$	≤ 150	°C
储存温度范围	$T_{\rm stg}$	-55 [~] 150	°C

注:

- 在任何情况下,不要超过P_D。
- 电压超过绝对最大额定值,可能会损坏芯片。

3.2 推荐工作条件

表 3-2 推荐工作条件

(所有电压均以COM 为参考点)

参数	符号	最小值	最大值	单位
高侧浮动绝对电压	V_{B}	$V_{S} + 10$	$V_{\rm S} + 20$	V
高侧浮动偏移电压	V_{S}	-5	600	V
高侧输出电压	$ m V_{HO}$	$V_{\rm S}$	V_{B}	V
低侧供电电压	V_{CC}	10	20	V
低侧输出电压	V_{LO}	0	$V_{\rm CC}$	V
逻辑输入电压(HIN, LIN)	V_{IN}	0	5.5	V
环境温度	T_{A}	-40	125	°C

注:芯片长久工作在推荐工作条件外,可能会影响其可靠性,不建议芯片在推荐工作条件之外长期工作。

3.3 静态电气参数

表 3-3 静态电气参数

(除非特别注明,否则 $T_A=25^{\circ}\mathrm{C}$, V_{BIAS} (V_{CC} , V_{BS}) = 15V, $V_S=COM$)

参数	符号	测试条件	最小值	典型值	最大值	单位
高电平输入阈值电压	V_{IH}	$V_{CC} = 10V \sim 20V$	2.7	_	_	V
低电平输入阈值电压	V_{IL}	V _{CC} - 10V 20V	_	-	0.8	
高电平输出电压, V _{BIAS} - V ₀	$ m V_{OH}$	I - 20A	_	0.7	1.20	
低电平输出电压, Vo	V_{OL}	$I_{\rm O}=20$ mA	_	0.2	0.35	
浮动电源漏电流	I_{LK}	$V_B = V_S = 600V$	_	1	5	
V _{BS} 静态电流	I_{QBS}	v – ov al sv	_	50	90	
Vcc 静态电流	I_{QCC}	V _{IN} = 0V 或 5V	_	210	380	μA
高电平输入偏置电流	I_{IN^+}	$V_{IN} = 5V$	_	25	50	
低电平输入偏置电流	I_{IN-}	$V_{IN} = OV$	_	_	1	
Vcc 开启电压	V _{CCUV+}		8.3	9.2	10.1	
Vcc 关断电压	$V_{\text{CCUV}-}$		7.6	8.4	9.2	V
Vcc 迟滞电压	V_{CCUVH}		0.4	0.8	_	
高电平输出短路脉冲电流	т	$V_{\text{O}} = \text{OV}$, PW \leqslant	140	250		
同电干制山应增脉件电机	I_{O^+}	10 μ s	140		_	mA
低电平输出短路脉冲电流	T _n	$V_0 = 15V$, PW \leqslant	250	410	-	ША
	I _O -	10 µ s	230			

3.4 动态电气参数

表 3-4 动态电气参数

(除非特别注明, 否则 T_A =25°C, V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 1000pF, V_S = COM)

参数	符号	测试条件	最小值	典型值	最大值	单位
输出上升沿传输时间	t_{on}	$V_S = OV$	_	90	160	
输出下降沿传输时间	$t_{ m off}$	$V_{\rm S} = 600 \rm V$	_	110	180	
高低侧传输时间匹配	MT		_	0	50	
输出上升时间	$t_{\rm r}$		_	85	130	ns
输出下降时间	t_{f}		_	45	80	
死区时间	DT		_	360	510	

4 逻辑时序图

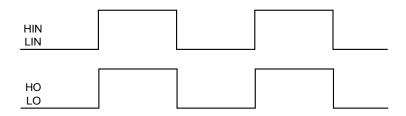


图 4-1 逻辑时序图

5 传输时间测试标准

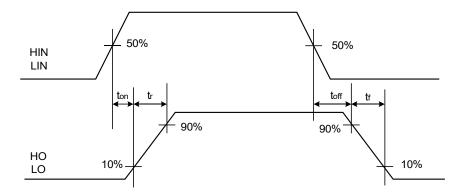


图 5-1 传输时间测试标准

6 传输时间匹配测试标准

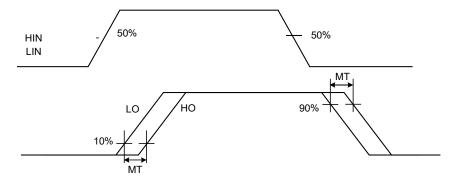


图 6-1 传输时间匹配测试标准

7 防直通功能

芯片内部设计专门用于防止功率管直通的保护电路,能有效地防止高侧和低侧输入信号受到干 扰时造成的功率管直通损坏。防直通电路如何保护功率管如下图所示。

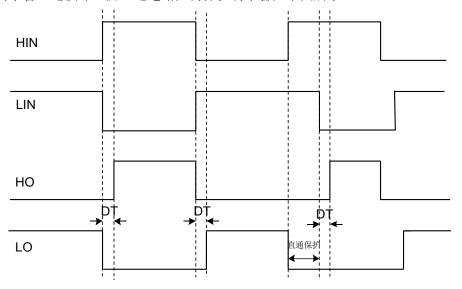


图 7-1 防直通功能示意图

8 死区功能

芯片内部设置了固定的死区时间保护电路。在死区时间内,高侧和低侧输出均被设置为低电平。所设置的死区时间必须确保一个功率管关断后,再开启另外一个功率管,有效防止产生上下功率管直通现象。死区时间、输入信号和输出信号的时序关系如下图所示。

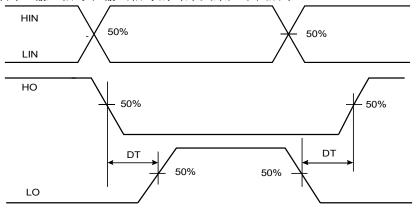


图 8-1 死区时间、输入信号和输出信号的时序关系框图