产品特性

- 内核与系统
 - 32 位 ARM MO 内核, 单周期硬件乘法器
 - 系统频率最高 96MHz
 - Cordic 三角函数与除法加速单元
- 工作电压范围: 2.5 ~ 5.5V
- 工作温度范围: 40℃ ~ 105℃
- 存储器

Flash: 64KBSRAM: 8KB

- 时钟源:
 - HSI: 48MHz 内部高速振荡器, 时钟精度 ±1%@25℃, ±2.5%@-40~105℃@5V
 - LSI: 32.768KHz 内部低速振荡器
 - LSE: 32.768KHz 外部低速晶体振荡器输入
 - PLL: 输出时钟最高频率 96MHz
- 低功耗模式:
 - 支持空闲、睡眠、停止模式。停止模式下所有外设寄存器数据、SRAM内容保存,支持低功耗Timer、看门狗、GPIO输入唤醒。
- 12bit ADC:
 - 最高采样率: 3M sps
 - 支持 16bit 硬件过采样
 - 支持 PGA 差分输入
 - 通道数: 10 个外部通道 (包含 3 个带PGA 的通道) , 1 个内部通道 (温度传感器)
 - 支持硬件触发 ADC 采样
 - 所有外部通道转换结果独立存放
- 12bit DAC
 - 最高转换率: 1M sps
 - 1 个通道
- 4 个模拟比较器
 - 带迟滞功能
 - 参考电压可调
 - 支持数字滤波消抖
 - 支持比较器输出极性可调
 - 支持使能内嵌反电动势 (BEMF) 电阻
- 3~4 个 PGA 可编程运算放大器
 - 差分输入,单端输出
 - 增益可调,内置反馈电阻网络

● 通讯接口:

- 2~3 路通用 UART
- 1~2 路 SPI
- 1路I2C
- 2 通道 DMA
- 定时器/计数器/PWM
 - 1 个 16 位 EPWM 定时器: 支持 4 对 8 通道 PWM 输出,支持互补、死区、刹车
 - 2 个 16 位捕获比较定时器 CCT: 可用于通用定时器,也可用于电机控制。分别支持 2 路输入捕获、输出比较,支持 PWM 输出。
 - 1 个电机传感器接口定时器,支持 HALL、正交编码器输入,输入滤波
 - 6 个通用 32 位定时器 TIM
 - 1个 LPTIM 低功耗定时器
 - 1 个看门狗定时器
- 快速 GPIO
 - 48Pin 封装最多支持 46 个 IO
 - 支持 Open Drain
 - 可配置成输出(推挽或开漏)、输入(悬空输入、上拉、下拉)或其他专用功能。
 - 最大 27mA 输出电流驱动能力
- 外设互联矩阵
 - 部分外设可通过硬件信号触发相关外设运行,从 而减小操作延迟和 CPU 负荷
- 调试模式
 - 串行调试接口 (ICP)
- 封装
 - LQFP48

产品型号

产品型号 Part Number	内核	加 速 器	主频(MHz)	Flash(KB)	RAM(KB)	GPIO数量	12bit ADC	ADC端口数量	ADC采样率(Msps)	12bit DAC	可编程放大器	比较器	HALL/编码器	DMA通道数	增强型互补定时器	捕获比较定时器	通用定时器	CRC	UART	I2C	SPI	CAN	预驱类型	预驱耐压	集成LDO	封装
SNR8652M	M0	三角函数、乘除法	96	64	8	46	1	14	3	1	4	4	1	2	1	2	6	1	3	1	2		1=1	-		LQFP48

目录

产品	侍性	1
产品	<u> </u> 덜号	2
1 .	总介	5
1.1	既述	5
2	功能 概 述	5
2.1	Arm Cortex M0 内核	5
2.2	内置 Flash 存储器(eFlash)	5
2.3	内置SRAM	5
2.4	直接存储器访问控制器(DMA)	6
2.5	嵌套向量中断控制器 (NVIC)	6
2.6	时钟和复位	7
2.7	供电方案	8
2.8	低功耗模式	8
2.9	电源电压监测器(PVD)	9
2.10	外设互联矩阵1	0
2.11	循环冗余校验计算单元(CRC)1	1
2.12	通用IO(GPIO)1	1
2.13	Cordic 与除法单元(Math Accelerator)1	1
2.14	V=102AA (
2.15	捕获比较定时器 (CCT)1	2
2.16	增强型 PWM 定时器(EPWM)1	3
2.17	霍尔和编码器接口控制器 (POSIF)1	3
2.18	低功耗时钟(LPTIM)1	4
2.19	看门狗(WDG)1	4
2.20	内部集成电路接口(I2C)1	4
2.21	通用异步收发器(UART)1	5
2.22	串行外设接口(SPI)1	6
2.23	模数转换器(ADC)1	7
2.24	数模转换器 (DAC)1	7
2.25	温度传感器(Temp Sensor)1	7
2.26	内部电压参考(VREF)1	8
2.27	模拟比较器 (ACMP)1	8
2.28	可编程增益放大器(PGA)1	8

新纳捷科技有限公司

2.29) ;	器件电子签名	19
2.30) i	调试支持(Debug Support)	19
3	引脚	定义及复用2	20
3.1	SNR	R8652M 引脚分布图	20
3.2	SNR	R8652M引脚复用表	21
3.3	PA 🤄	引脚数字功能复用表	22
3.4	PB 5	引脚数字功能复用表	22
3.5	PC 5	引脚数字功能复用表	23
3.6	PD	引脚数字功能复用表	23
3.7	引脚	模拟功能复用表	24
3.8	存储	[区映射图	24
3.8.1	1	系统存储空间映射	24
3.8.2	2 .	APB 映射	25
3.8.3	3	AHB 映射	26
4	电气	特性	28
4.1	绝对	最大额定值	28
4.2	工作	条件	29
4.2.1	1 :	通用工作条件	29
4.2.2	2 .	上电和掉电时的工作条件	29
4.2.3	3	内嵌复位和电源控制模块特性	29
4.2.4	4	供电电流特性	30
4.2.5	5	内部时钟源特性	31
4.2.6	6	外部时钟源特性	32
4.2.7	7	PLL 特性	33
4.2.8	8 ;	存储器特性	33
4.2.9	9	I/O 端口特性	33
4.2.1	10	NRST 引脚特性	34
4.2.1	11	ADC 特性	34
4.2.1	12	DAC 特性	35
4.2.1	13	I2C 特性	35
5	封装	信息	37
5.1	LQF	P48 封装信息	37
6	修改	记录	39
7	吉田	1	40

1 总介

1.1 概述

使用高性能的 ARM® CortexTM-M0 为内核的 32 位微控制器(MCU),系统最高频率可达 96MHz。内建嵌套向量中断控制器。主要有并行I/O 口(支持普通输入、上下拉输入、推挽输出、 开漏输出、并可配置边沿或者电平触发中断)、多种定时器组合、SPI、I2C、UART、EPWM、 CCT、三角函数(Cordic)和硬件除法单元、ADC、DAC、ACMP、PGA 等部件。

2 功能概述

2.1 Arm Cortex M0 内核

Cortex®-M0 处理器是一款入门级 32 位 Arm Cortex 处理器,具有比其他 8 位和 16 位微控制器更高的代码密度。具有高性能和低功耗的特点,内核与嵌套的矢量中断控制器(NVIC)紧密耦合。

2.2 内置 Flash 存储器 (eFlash)

包含 64K Bytes 主存储块, 1K Bytes 用户选项字节(Option Bytes)。支持读操作,页擦除,整片擦除,可通过 8/16/32 bits 方式编程写入闪存。支持 Flash 擦写保护和配置寄存器写保护。支持指令预取和缓存,加速取指执行。

2.3 内置SRAM

8K Bytes 的内置 SRAM。

2.4 直接存储器访问控制器 (DMA)

直接存储器访问 (DMA) 控制器可以在无需 CPU 介入情况下,自动通过系统总线实现不同存储器/外设之间的数据传输。支持 2 个传输通道,可灵活配置每个通道传输的源地址和目的地址。2 个独立传输通道,固定优先级,通道 0 优先级最高,通道 1 优先级最低。

所有 DMA 通道均可单独配置如下参数:

- 3 种数据传输宽度: 8-bit、16-bit、32-bit,源和目的数据宽度一致
- 支持软件触发/硬件触发,硬件触发源可配置为来自某个系统外设
- 源地址/目标地址可灵活配置为任意外设或者存储器
- 源地址与目的地址变化模式可配(自增,循环)
- 传输数据块大小可配置: 1~65536
- 传输轮数可配置: 1~4096

2.5 嵌套向量中断控制器 (NVIC)

可配置的嵌套矢量中断控制器与处理器核心紧密耦合,能够处理多达 32 个可屏蔽中断通道(不包括 16 个 Cortex®-M0 的中断线)和 16 个可编程优先级。

NVIC 的特点:

- 低延迟中断处理
- 紧耦合的 NVIC 接口
- 允许中断的早期处理
- 中断向量入口地址直接进入内核
- 支持中断嵌套,优先处理后到达的较高优先级中断
- 支持中断尾部链接功能

- 中断返回时自动恢复现场,无需额外操作指令

2.6 时钟和复位

时钟控制器将来自不同振荡器的时钟分配给核心和外围设备,此外还负责管理低功耗模式的时钟门控,并确保时钟的稳健性。

芯片提供以下时钟源:

- 高速内部时钟 (HSI RC) 48MHz
- 低速内部时钟 (LSI RC) 32.768KHz
- 低速外部时钟 (LSE OSC 时钟)
- 锁相环 (PLL 时钟)

PLL 的输入参考时钟是 HSI 时钟 8 分频 (也即 6MHz) , PLL 输出最高时钟频率 96MHz。

可通过配置寄存器来选择以 HSI 或者 PLL 时钟作为系统时钟(SYSCLK),系统时钟最大频率为 96MHz (当选择 PLL 时)。芯片复位后默认选择 HSI 作为系统时钟。

系统时钟经过两个可配置的分频器分别输出 AHB 和 APB 时钟。

可通过配置寄存器来选择 LSI 或者 LSE 做低速时钟,该低速时钟可作为 LPTIM 和 WDG 的时钟源。

支持微控制器时钟输出(MCO),将时钟输出到 MCO 引脚上,可选择如下来源: HSI 时钟 6分频,PLL 时钟 6分频,LSI 时钟,LSE 时钟。

芯片共有两种类型的复位,分别为电源复位和系统复位。

电源复位源包括上电复位 (POR) , 掉电复位 (PDR) , 外部按键复位, 上电安全检查复位 (检查启动过程是否受到恶意攻击或强烈干扰) 。

系统复位包括如下:软件复位, CPU 发生死锁 lockup 时复位 (默认关闭,软件可启用),

WDG 系统看门狗复位,PVD 监测电压异常复位。

2.7 供电方案

VDD 电压范围为 2.5V ~ 5.5V。 VDD 引脚为 I/O 引脚和内部电路供电。

2.8 低功耗模式

支持睡眠(SLEEP),深度睡眠(DEEP SLEEP),停止(STOP)三种低功耗模式。 详见下表。

SNR8652M

低功耗模式	睡眠(SLEEP)	深度睡眠(DEEP SLEEP)	停止(STOP)
寄存器 RCC_LPM_CR	-	MODE=00	MODE=01
CM0 寄存器 SCB_SCR.SLEEPDEEP	0	1	1
进入指令	WFI 或 WFE	WFI 或 WFE	WFI 或 WFE
唤醒源	任意中断可唤醒	任意中断可唤醒	可被 GPIO 、LPTIM 、 WDG 中断唤醒
IO 输出状态	保持	保持	保持
SRAM、寄存器	保持	保持	保持
定义	只有 CPU 的工作时钟被关闭,所有外设(包括 CPU内部外设,包括 CPU内部外设,如NVIC、SysTick)正常工作。	1.CPU 工作时钟和 CPU 内部外设时钟被关闭。 2. 系统外设时钟 可在RCC_SLEEP_CR寄存器中配置为开启或关闭状态。	1. CPU 工作时钟和 CPU 内部外设时钟被关闭。 2.除低速时钟 LSI 可配置 外,其他所有系统外设时 钟关闭。软件可通过配置 寄存器RCC_STOP_CR 选 择低速时钟 LSI 在 STOP 模式下打开或者关闭。 3.高速时钟源 HSI 关闭, ADC、ACMP、PVD 等 模块关闭。 4. Flash 进入深度睡眠模 式(Deep Standby)。
唤醒后状态	MCU 恢复到正常 运行模式,程序继 续执行。	MCU 恢复到正常运行模式,程序继续执行	MCU 恢复到正常运行模式,程序继续执行
注意事项	-	若配置UART/SPI/IIC 时钟在深度睡眠模式下被关闭,则进入该模式前软件需先关闭这些外设的使能。	若配置停止模式时 LSI 时钟关闭,则 LPTIM 计数值会被复位。 进入停止模式前,软件需先关闭 UART/SPI/IIC 的使能。

2.9 电源电压监测器 (PVD)

嵌入式可编程电压检测器(PVD),用于监测 VDD 电源电压,并将其和软件设置的电压阈值进行

比较。内部的电压比较器产生跳变信号,软件可以设置选择在跳变信号的下降、上升或高低时产生中断或者复位。PVD 的主要特性如下:

- 可编程阈值电压: 2.2V、2.4V、2.6V、2.8V、3.0V、3.2V、3.4V、3.6V、3.8V、4.0V
- 支持比较器输出信号数字滤波消抖
- 可选择上升、下降沿和高低电平四种事件触发方式
- 可设置事件触发响应为异步中断或复位

2.10 外设互联矩阵

MCU 多个外设间有直接连接。支持硬件相互触发,硬件连接触发能消除软件延迟,且在配置好后,不需要软件介入,节省了 CPU 资源。这些互连可以在正常运行和低功耗模式下工作,具体取决于外设。连接关系如下:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			目的外设		
源外设事件	ADC	ССТ0	CCT1	POSIF	EPWM
IO 触发 (ADC_TRIG)	Υ				
EPWM ADC 比较事件 1	Υ				
EPWM ADC 比较事件 2	Υ				
DMA 通道 0 轮传输完成事件					
DMA 通道 1 轮传输完成事件					
TIMO 计数完成事件	Υ				
TIM1 计数完成事件	Υ				
TIM2 计数完成事件	Υ				
TIM3 计数完成事件	Υ				
TIM4 计数完成事件	Υ				
TIM5 计数完成事件	Υ				
ACMP 0 输出		Υ	Υ	Υ	Υ
ACMP 1 输出		Υ	Y	Υ	Υ
ACMP 2 输出		Υ	Υ	Υ	Υ
ACMP 3 输出		Υ	Υ	Υ	Υ

2.11 循环冗余校验计算单元 (CRC)

循环冗余校验 (CRC) 计算单元,根据特定多项式和 8、16、32 位数据计算 CRC 校验码,被广泛运用于校验数据传输或数据存储的完整性。

- 可选 CRC-32 多项式: 0x4C11DB7
 X³² + X²⁶ + X²³ + X²² + X¹⁶ + X¹² + X¹¹ + X¹⁰ + X⁸ + X⁷ + X⁵ + X⁴ + X² + X + 1
- 可选 CRC-16 多项式: 0x1021 X¹⁶ + X¹² + X⁵ + 1
- 可选 CRC-16 多项式: 0x8005 X¹⁶ + X¹⁵ + X² + 1
- 支持8、16、32位输入数据位宽
- 使用 4 个 AHB 时钟周期完成 32 位数据的 CRC 计算
- 输入数据、输出结果可反转
- 可配置的 CRC 初值

2.12 通用IO (GPIO)

最大支持 46 个通用输入输出引脚 (GPIO) ,包含 PA, PB, PC 和 PD 四组端口。

每个端口都有对应的一组配置、状态寄存器,用户可以根据应用需求独立灵活的将各个 IO 配置成通用输入/输出、外设复用功能(AF)或模拟功能使用。

支持上升沿/下降沿/上下沿和高/低电平触发的 GPIO 中断。

每个 GPIO 引脚都可以灵活的配置上拉、下拉或无上下拉电阻。数字输出支持推挽和开漏的选择,最大 4 档输出速率可选。

2.13 Cordic 与除法单元(Math Accelerator)

内嵌硬件坐标旋转数字计算机 (Cordic) 和除法单元,可用于对电机控制算法加速,减少 CPU

资源占用。硬件 Cordic 计算单元,支持计算正余弦值,支持给定正余弦值计算反正切与模值,数据均为 Q15 格式。硬件除法单元,支持 Q15 格式除法,被除数 (16 位有符号) 左移 15 位除以除数 (16 位有符号),支持溢出保护。

2.14 定时器 (Timer)

32 位通用定时器 (Timer) , 支持 32 位自动装载值 , 向下计数 , 并在计数值从设定值变为零时 触发中断。支持单次计数和周期计数两种模式。

2.15 捕获比较定时器 (CCT)

捕获比较定时器具备 16 位向上计数器,支持单脉冲计数和周期计数两种计数模式,计数时钟是经过预分频器的分频时钟。模块内部的定时器支持两种工作模式:捕获输入模式和比较输出模式。前者可以进行输入滤波和边沿检测;后者可以输出边沿模式的 PWM 信号。

主要特性如下:

- 16 位向上计数, 16 位自动装载值寄存器
- 2 个独立通道,每个通道可单独设置工作模式
- 2 种工作模式:捕获输入、输出比较
- PWM 生成 (边沿模式)
- 单脉冲模式输出
- 预分频器 (1/2/4/8/16/32/64/128)
- 输入滤波和边沿检测

2.16 增强型 PWM 定时器 (EPWM)

EPWM (Enhanced Pulse Width Modulation),即增强型的脉冲宽度调制,支持输出 4 通道 8 路带互补与死区的 PWM。

- 16 位计数器,支持增减计数(中央对齐模式),单增计数两种模式
- 支持单脉冲计数/周期计数两种模式
- 计数时钟分频系数 1/2/4/8/16/32/64/128
- 支持 4 通道 PWM 生成模块,可产生 4 对互补 (8 路) PWM 信号,支持 PWM 移相
- 支持死区插入
- 支持强制改变 I/O 输出状态
- 支持产生 2 路同步触发 ADC 采样信号, 与 PWM 时间基准相同。
- 支持多路硬件急停信号,支持急停信号的硬件滤波和极性选择,急停之后的 I/O 输出状态可设置。
 - 可配置完成周期计数产生 DMA 请求

2.17 霍尔和编码器接口控制器 (POSIF)

POSIF 可捕获编码器或霍尔传感器输入,实现硬件解析输入信号并自动计数,可用于电机控制中获取电机的工作状态。

主要特性如下:

- 可配置为两种模式:编码器,霍尔传感器
- 可设置计数预分频器(1/2/4/8/16/32/64/128)
- 支持 3 路输入信号滤波,可选择模拟比较器输出作为输入

- 16 位编码器计数器,支持正交计数,方向计数

- 正交编码器支持 Z 相输入自动复位计数值
- 正交编码器支持配置最大计数值,减计数到 0,硬件自动调整为最大计数值
- 编码器支持 23 位输入脉冲计数器,可计数输入脉冲个数
- 23 位霍尔宽度计数器,硬件自动捕获输入边沿变化,可配置边沿变化产生中断
- 可配置霍尔宽度最大值,超过最大值可配置产生中断

2.18 低功耗时钟 (LPTIM)

LPTIM 包含 32 位向上计数器,使用 32K 低频时钟作为计数时钟,可以周期性触发中断。低功耗模式下,可作为 MCU 唤醒源。

2.19 看门狗 (WDG)

看门狗外设, 具有安全性高、定时准确及使用灵活的优点。

看门狗外设可检测并解决由软件错误导致的故障,并在计数器达到给定的超时值时触发系统复位。

2.20 内部集成电路接口 (I2C)

I2C 接口硬件实现了 I2C 的时序序列、传输协议、仲裁判定和事件中断等功能,提供了多主机 通信能力。该模块可在多主机 I2C 总线中用作主机或从机,能够实现标准传输模式、快速传输模式 和超快速传输模式。I2C 使能期间,SCL、SDA 对应的GPIO 应配置成开漏模式,并通过外部电阻上 拉。

主要特性如下:

- 主或从模式选择
- 支持标准模式 (高达 100 Kbit/s)
- 支持快速模式 (高达 400 Kbit/s)
- 支持超快速模式 (高达 1 Mbit/s)
- 支持 7 位和 10 位寻址模式
- 提供广播呼叫功能
- 可编程的 SDA 数据建立保持时间
- 支持总线事件管理
- 支持多主机通信
- 支持 SCL 下拉调控通信速率
- 支持对输入信号的数字滤波
- 支持通信超时监测
- 收发1字节缓冲
- 支持收/发数据的 DMA 请求

2.21 通用异步收发器 (UART)

UART 能够灵活地与外部设备进行全双工数据交换,内部可编程波特率发生器实现了多种波特率,满足了外部设备对工业标准非归零码(NRZ)异步串行数据格式的要求。

主要特性如下:

- 全双工异步通信
- NRZ 标准格式
- 可编程收发波特率

- 数据字长度可编程 (6 位、7 位、8 位或 9 位)
- 可编程的数据传输顺序,MSB 或 LSB 优先
- 停止位可配置 (支持 1 个或 2 个停止位)
- 单线半双工通信
- 数据收发有独立使能
- 支持数据收发中断和错误检测中断
- 支持奇偶校验
- 支持收/发数据的 DMA 请求

2.22 串行外设接口 (SPI)

SPI接口广泛用于MCU与外部设备间的通信,支持全双工、半双工同步串行的通信方式,软件通过控制片选信号能实现一主多从的通讯网络结构。

SPI 主要特性如下:

- 主或从工作模式
- 全双工同步传输
- 单工同步传输
- 4至16位可配传输数据长度
- 支持软件或硬件的 NSS 片选管理
- 可编程的时钟极性和相位
- 可编程的数据顺序,支持 MSB 在前或 LSB 在前
- 主模式只发送支持最高时钟频率为 24MHz, 主模式接收支持最高时钟频率为 12MHz
- 从模式支持最高时钟频率为 8MHz

- 支持数据接收发送中断
- 支持传输错误中断
- 支持收/发数据的 DMA 请求

2.23 模数转换器 (ADC)

ADC 是 12 位的逐次逼近型模数转换器,最大支持对 11 个模拟输入通道采样,其中一个内部通道可以测量内部温度传感器,有 10 个模拟输入通道为外部信号源。ADC 模数转换单元支持单通道单次采集,单通道连续采集和序列扫描采集工作模式,每种工作模式都有独立的 16 位数据寄存器,采集的数据将按照左对齐或右对齐的方式存储。支持模拟看门狗(信号窗口电压监测)和硬件过采样处理的特性,该功能有效降低了 CPU 对信号监测和过采样数据处理的计算负担。另外,ADC 模块还支持通道插队数据采集,以满足在连续或扫描模式下及时获得通道转换数据。

2.24 数模转换器 (DAC)

DAC 模块具有固定 12 位电压输出数模转换的功能,支持 1 个通道,转换率 1Msps,可以通过 CPU 更新 DAC 转换数据。具有两路可配置参考电压源(AVDD 和 Bandgap)和 Buffer 输出,并且 DAC 输出可以作为模拟比较器(ACMP)的输入基准电压。DAC 输出如果未配置到引脚 DAC_OUT,则 DAC_OUT 引脚可作为高速通用输入/输出(FGPIO)。

2.25 温度传感器 (Temp Sensor)

温度传感器内置于器件中,可以用于测量器件的结温(TJ),温度传感器的模拟输出连接到模数转换器(ADC)的输入通道 14,软件可以通过 ADC 采样得到温度数据。温度传感器的输出电压随温度线性变化,由于工艺不同,该线性的偏移量取决于各个芯片。为了提高测量温度传感器的准确性,

ADC 在温度传感器的采样通道会对偏移误差进行校准。

2.26 内部电压参考 (VREF)

器件上电后,可将供参考电压给到片内模拟器件 (例如 ADC, ACMP 和 PGA 等)。

内部电提供两个等级的参考电压:工作电压 (VDD) 和 2.4V 内部带隙基准 (Bandgap) 电压。

2.27 模拟比较器 (ACMP)

器件内置四个模拟比较器(ACMP),可用于模拟信号触发的低功耗唤醒,模拟信号调理等功能。

主要的特件为:

- ACMP 正端输入选择: CMP IN0-5, PGA0 和 PGA1 输出
- ACMP 负端输入选择: CMP IN0-5, DAC 输出, Vref 分压
- 支持数字滤波消抖
- 支持比较器输出极性可调
- 支持异步中断
- 支持迟滞功能
- 支持比较结果输出到互连矩阵
- 支持使能内嵌反电动势 (BEMF) 电阻

2.28 可编程增益放大器 (PGA)

器件内置有 3~4 路可编程增益放大器,每路都可以通过模拟引脚以差分方式输入,内置反馈电阻,可以设置运算放大器增益。放大器(PGA0/1/2/3)的输出可连接到 ADC 通道 0/1/2/3,同时

PGA0 和 PGA1 的输出还作为模拟比较器 (ACMP) 的输入。主要特性:

- 差分输入
- 增益可配, 范围为 1, 2, 4, 8, 16, 32
- PGA0/1/2/3 的输出内部可以直接连接至 ADC 模拟输入
- PGA0 和 PGA1 的输出内部可以直接连接至 ACMP

注: 当 PGA 采样端口可能产生负压时, 建议在输入端串接 20KΩ电阻

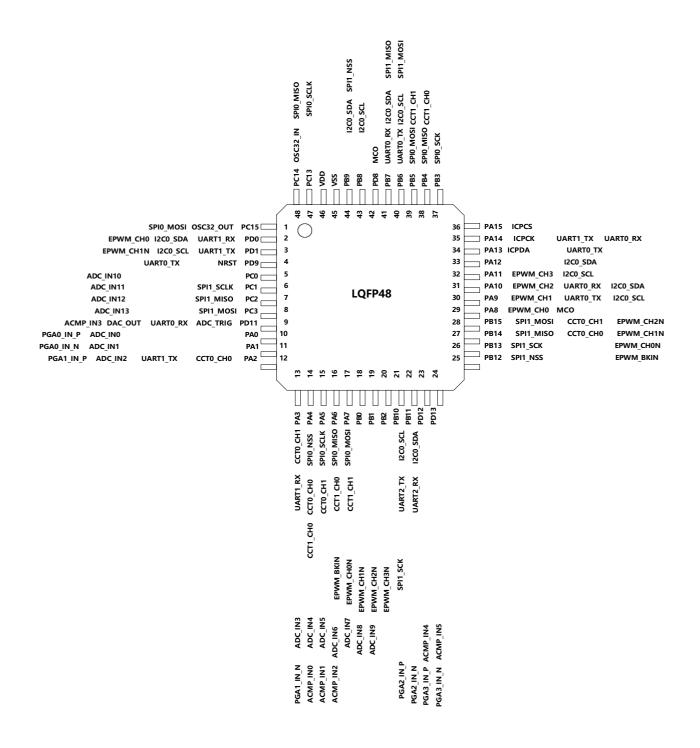
2.29 器件电子签名

器件内保留有电子签名,其为只读存储单元,可以使用调试接口或CPU 对其进行读取,包含96位唯一身份标识码,封装类型,Flash 及RAM 大小等信息,支持字节(8位),半字(16位)和全字(32位)访问,所有信息为出厂前设置的用户不可更改信息。

2.30 调试支持 (Debug Support)

支持串行调试端口 (ICP)。

在 MCU 处于低功耗模式时,调试器通过 ICP 端口发起连接将会唤醒 MCU,可通过 ICP访问内核和外设寄存器,对标准调试功能没有任何限制。


当 MCU 已经处于调试状态时,MCU 无法进入低功耗模式。

断点或单步调试期间,可配置 DBG_CFG 寄存器来配置计数器外设 (EPWM, CCT, TIM, WDG 和 LPTIM) 是否暂停计数。

SNR8652M

3 引脚定义及复用

3.1 SNR8652M 引脚分布图

3.2 SNR8652M引脚复用表

SNR8652M	数字复用功能	模拟复用功能	引脚默认模式
PA0		ADC INO, PGA0 INO	输入
PA1		ADC IN1、PGA0 IN1	输入
PA2	UART1 TX/CCT0 CH0	ADC IN2、PGA1 IN0	输入
PA3	UART1 RX/CCT0 CH1	ADC IN3、PGA1 IN1	输入
PA4	SPIO NSS/CCTO CHO/CCT1 CHO	ADC IN4、ACMP IN0	输入
PA5	SPI0_SCK/CCT0_CH1	ADC_IN5、ACMP_IN1	输入
PA6	CCT1_CH0/SPI0_MISO/EPWM_BKIN	ADC_IN6、ACMP_IN2	输入
PA7	CCT1_CH1/SPI0_MOSI/EPWM_CH0N	ADC_IN7	输入
PA8	MCO/EPWM_CH0		输入
PA9	UARTO_TX/EPWM_CH1/I2C0_SCL		输入
PA10	UARTO_RX/EPWM_CH2/I2CO_SDA		输入
PA11	EPWM_CH3/I2C0_SCL		输入
PA12	I2C0_SDA		输入
PA13	ICPDA/UART0_TX		ICPDA <u>,上</u> 打
PA14	UART1_TX/ICPCK/UART0_RX		ICPCK,下拉
PA15	ICPCS/UART1_RX/SPI0_NSS		输入
PB0	EPWM_CH1N	ADC_IN8	输入
PB1	EPWM_CH2N	ADC_IN9	输入
PB2	EPWM_CH3N		输入
PB3	SPIO_SCK		输入
PB4	CCT1_CH0/SPI0_MISO		输入
PB5	CCT1_CH1/SPI0_MOSI		输入
PB6	I2C0_SCL/ŪART0_TX/SPI1_MOSI		输入
PB7	I2C0_SDA/UART0_RX/SPI1_MISO		输入
PB8	I2C0_SCL		输入
PB9	I2C0_SDA/SPI1_NSS		输入
PB10	I2C0_SCL/UART2_TX/SPI1_SCK	PGA2_IN0	输入
PB11	I2C0_SDA/UART2_RX	PGA2_IN1	输入
PB12	SPI1_NSS/EPWM_BKIN		输入
PB13	SPI1_SCK/EPWM_CH0N		输入
PB14	CCT0_CH0/SPI1_MISO/EPWM_CH1N		输入
PB15	CCT0_CH1/SPI1_MOSI/EPWM_CH2N		输入
PC13	SPIO_SCK		输入
PC14	SPI0_MISO	OSC32_IN	输入
PC15	SPI0_MOSI	OSC32_OUT	输入
PD0	I2C0_SDA/UART1_RX/EPWM_CH0		输入
PD1	I2C0_SCL/UART1_TX/EPWM_CH1N		输入
PD2			输入
PD3			输入
PD7	SPI1_SCK		输入
PD8	MCO		输入,下拉
PD9	UARTO_TX/NRST		NRST,上拉
PD10			输入
PD11	UART0_RX/ADC_TRIG	DAC_OUT、ACMP_IN3	输入
PD12		PGA3_IN0、ACMP_IN4	输入
PD13		PGA3_IN1、ACMP_IN5	输入

注: POSIF_CH0, POSIF_CH1, POSIF_CH2 分别与 CCT0_CH0, CCT0_CH1, CCT1_CH0 使用同一数字复用功能,使用 POSIF (霍尔和编码接器接口) 时需按此对应关系将对应的IO 配置成 CCT 通道复用功能。

3.3 PA 引脚数字功能复用表

		数字复用功能													
管脚名称	0	1	2	3	4	5	6	7							
PA0															
PA1															
PA2	CCT0_CH0	UART1_TX													
PA3	CCT0_CH1	UART1_RX													
PA4	SPI0_NSS		CCT0_CH0	CCT1_CH0											
PA5	SPI0_SCK		CCT0_CH1												
PA6	SPI0_MISO	CCT1_CH0	EPWM_BKIN												
PA7	SPI0_MOSI	CCT1_CH1	EPWM_CH0N												
PA8	MCO		EPWM_CH0												
PA9		UART0_TX	EPWM_CH1		I2C0_SCL										
PA10		UART0_RX	EPWM_CH2		I2C0_SDA										
PA11			EPWM_CH3			I2C0_SCL									
PA12						I2C0_SDA									
PA13	ICPDA		UART0_TX												
PA14	ICPCK	UART1_TX	UART0_RX												
PA15	SPI0_NSS	UART1_RX													

3.4 PB 引脚数字功能复用表

		数字复用功能													
管脚名称	0	1	2	3	4	5	6	7							
PB0			EPWM_CH1N												
PB1			EPWM_CH2N												
PB2	EPWM_CH3N														
PB3	SPI0_SCK														
PB4	SPI0_MISO	CCT1_CH0													
PB5	SPI0_MOSI	CCT1_CH1													
PB6	UART0_TX	I2C0_SCL				SPI1_MOSI									
PB7	UART0_RX	I2C0_SDA				SPI1_MISO									
PB8		I2C0_SCL													
PB9		I2C0_SDA				SPI1_NSS									
PB10		I2C0_SCL			UART2_TX	SPI1_SCK									
PB11		I2C0_SDA			UART2_RX										
PB12	SPI1_NSS		EPWM_BKIN												
PB13	SPI1_SCK		EPWM_CH0N												
PB14	SPI1_MISO	CCT0_CH0	EPWM_CH1N												
PB15	SPI1_MOSI	CCT0_CH1	EPWM_CH2N												

3.5 PC 引脚数字功能复用表

	数字复用功能													
管脚名称	0	1	2	3	4	5	6	7						
PC0														
PC1		SPI1_SCK												
PC2		SPI1_MISO												
PC3		SPI1_MOSI												
PC4		UART2_TX												
PC5		UART2_RX												
PC6	CCT1_CH0													
PC7	CCT1_CH1													
PC8														
PC9														
PC10		UART2_TX												
PC11		UART2_RX												
PC12														
PC13	SPI0_SCK													
PC14	SPI0_MISO													
PC15	SPI0_MOSI													

3.6 PD 引脚数字功能复用表

				数字复	用功能			
PAD NAME	0	1	2	3	4	5	6	7
PD0	UART1_RX	I2C0_SDA	EPWM_CH0					
PD1	UART1_TX	I2C0_SCL	EPWM_CH1N					
PD2								
PD3								
PD4	I2C0_SCL							
PD5	I2C0_SDA							
PD6								
PD7	SPI1_SCK							
PD8	MCO							
PD9	NRST	UART0_TX						
PD10								
PD11	ADC_TRIG	UART0_RX						
PD12								
PD13								

3.7 引脚模拟功能复用表

		模拟复	更用功能	
引脚名称	0	1	2	3
PA0	ADC_IN0	PGA0_IN0		
PA1	ADC_IN1	PGA0_IN1		
PA2	ADC_IN2	PGA1_IN0		
PA3	ADC_IN3	PGA1_IN1		
PA4	ADC_IN4	ACMP_IN0		
PA5	ADC_IN5	ACMP_IN1		
PA6	ADC_IN6	ACMP_IN2		
PA7	ADC_IN7			
PB0	ADC_IN8			
PB1	ADC_IN9			
PB10	PGA2_IN0			
PB11	PGA2_IN1			
PC0	ADC_IN10			
PC1	ADC_IN11			
PC2	ADC_IN12			
PC3	ADC_IN13			
PC14	OSC32_IN			
PC15	OSC32_OUT			
PD11	DAC_OUT	ACMP_IN3		
PD12	PD12 PGA3_IN0			
PD13	PGA3_IN1	ACMP_IN5		

3.8 存储区映射图

3.8.1 系统存储空间映射

开始地址	结束地址	大小	存储区分配
0x0000_0000	0x0FFF_FFFF	128MB	重映射空间
0x1000_0000	0x1000_17FF	6KB	Reserved
0x1000_1800	0x1000_1BFF	1KB	User Option Bytes
0x1000_1C00	0x17FF_FFFF		Reserved
0x1800_0000	0x1800_FFFF	64KB	Embedded Flash 嵌入式 eFlash
0x1801_0000	0x1801_FFFF		Reserved
0x1802_0000	0x1FFF_FFFF		Reserved

0x2000_0000	0x2000_1FFF	8KB	SRAM
0x2000_2000	0x2000_3FFF		Reserved
0x2000_4000	0x3FFF_FFFF		Reserved
0x4000_0000	0x4007_FFFF	512KB	128 x 4KB APB 外设
0x4008_0000	0x400F_FFFF	512KB	128 x 4KB AHB 外设
0x4010_0000	0xDFFF_FFFF		Reserved
0xE000_0000	0xE00F_FFFF	1MB	Cortex-M0 peripherals
0xE010_0000	0xFFFF_FFFF		Reserved

3.8.2 APB 映射

分类	开始地址	大小	存储区分配
	0x40001000	4KB	复位和时钟控制(RCC), DEBUG 控制, PGA
		TIND	控制
	0x40002000	4KB	Reserved
	0x40003000	4KB	System ROM table
系统控制	0x40004000	4KB	Reserved
	0x40005000	4KB	Reserved
	0x40006000	4KB	Reserved
	0x40007000	4KB	Reserved
	0x40008000	4KB	UART0
	0x40009000	4KB	UART1
	0x4000A000	4KB	UART2
	0x4000B000	4KB	Reserved
	0x4000C000	4KB	Reserved
	0x4000D000	4KB	Reserved
	0x4000E000	4KB	SPI0
低速外设接口	0x4000F000	4KB	SPI1
	0x40010000	4KB	Reserved
	0x40011000	4KB	Reserved
	0x40012000	4KB	I2C
	0x40013000	4KB	Reserved
	0x40014000	4KB	Reserved
	0x40015000	4KB	Reserved
	0x40016000	4KB	Reserved
	0x40017000	4KB	Reserved

==	0x40018000	4KB	Reserved
	0x40019000	4KB	TIM0
	0x4001A000	4KB	TIM1
	0x4001B000	4KB	TIM2
	0x4001C000	4KB	TIM3
	0x4001D000	4KB	TIM4
	0x4001E000	4KB	TIM5
	0x4001F000	4KB	ССТ0
	0x40020000	4KB	CCT1
	0x40021000	4KB	Reserved
	0x40022000	4KB	Reserved
定时器	0x40023000	4KB	EPWM
	0x40024000	4KB	Reserved
	0x40025000	4KB	Reserved
	0x40026000	4KB	Reserved
	0x40027000	4KB	WDG
	0x40028000	4KB	Reserved
	0x40029000	4KB	POSIF (HALL/编码器)
	0x4002A000	4KB	Reserved
	0x4002B000	4KB	Reserved
	0x4002C000	4KB	Reserved
	0x4002D000	4KB	LPTIM
	0x40033000	4KB	SAR ADC
	0x40034000	4KB	Reserved
	0x40035000	4KB	DAC
	0x40036000	4KB	Reserved
模拟外设	0x40037000	4KB	Reserved
	0x40038000	4KB	Reserved
	0x40039000	4KB	PVD
	0x4003A000	4KB	ACMP
	0x4003B000	4KB	Reserved
其他	0x4003C000	4KB	CRC
	0x4003D000	4KB	DMA

3.8.3 **AHB** 映射

	分类	开始地址	大小	存储区分配	
--	----	------	----	-------	--

	0x40080000	4KB	GPIO A
	0x40081000	4KB	GPIO B
	0x40082000	4KB	GPIO C
GPIOs	0x40083000	4KB	GPIO D
GI 103	0x40084000	4KB	Reserved
	0x40085000	4KB	Reserved
	0x40086000	4KB	Reserved
	0x40087000	4KB	Reserved
运算加速器	0x40088000	4KB	MATH_ACC (硬件 Cordic 与除法单元)
eFlash 控制器	0x40089000	4KB	嵌入式 Flash 控制器
	0x4008A000	4KB	Reserved
	0x4008B000	4KB	Reserved
保留	0x4008C000	4KB	Reserved
	0x4008D000	4KB	Reserved
	0x4008E000	4KB	Reserved
	0x4008F000	4KB	Reserved

4 电气特性

4.1 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述 最小值 最大值 外部主供电电压 ⁽¹⁾ -0.3 5.5		最大值	单位
V _{DD} - V _{SS}	外部主供电电压①	-0.3	5.5	V
V _{IN}	在其它引脚上的输入电压(2)	Vss-0.3	5.5	V

^{1.} 所有的电源和地引脚必须始终连接到外部允许范围内的供电系统上。

2. INJ(PIN)绝对不可以超过它的极限,即保证 VIN 不超过其最大值。如果不能保证 VIN 不超过其最大值,也要保证在外部限制 IINJ(PIN)不超过其最大值。当 VIN > VDD 时,有一个正向注入电流;当 VIN < Vss 时,有一个反向注入电流。

符号	描述	最大值	单位
I _{VDD}	经过 V _{DD} 电源线的总电流 (供应电流) (1)	100	mA
I _{VSS}	经过 V _{SS} 地线的总电流 (流出电流) ⁽¹⁾	100	mA
	任意 I/O 和控制引脚上的输出灌电流	27	mA
I _{IO}	任意 I/O 和控制引脚上的输出电流	-27	mA
	其他引脚的注入电流(4)	±5	mA
∑I _{INJ(PIN)}	所有 I/O 和控制引脚上的总注入电流 ⁽⁴⁾	±5	mA

- 1. 所有的电源和地引脚必须始终连接到外部允许范围内的供电系统上。
- 2. INJ(PIN)绝对不可以超过它的极限,即保证 VIN 不超过其最大值。如果不能保证 VIN 不超过其最大值,也要保证在外部限制 IINJ(PIN)不超过其最大值。当 VIN > VDD 时,有一个正向注入电流;当 VIN < VSS 时,有一个反向注入电流。

- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时,∑I_{INJ(PIN)}的最大值为正向注入电流与反向注入电流的即时 绝对值之和。该结果基于在器件所有 I/O 端口上∑I_{INJ(PIN)}最大值的特性。

4.2 工作条件

4.2.1 通用工作条件

符号	参数	条件	最小值	最大值	单位
V_{DD}	外部输入电压范围		2.5	5.5	V
f _{HCLK}	内部 AHB 时钟频率			96	MHz
f _{PCLK}	内部 APB 时钟频率			96	MHz
T _A	环境温度		-40	105	°C

4.2.2 上电和掉电时的工作条件

下表中给出的参数是在一般的工作条件下测试得出。

符号	参数	条件	最小值	最大值	单位
t.oo	V∞上升速率		200	8	us/V
TVDD	V∞下降速率		20	8	

4.2.3 内嵌复位和电源控制模块特性

	参数	条件	最小值	典型值	最大值	单位
$V_{ m por}$	POR 释放电压 (上电过程)			2.05	是大值 2.212 2.416 2.619 2.822 3.024 3.227 3.428 3.63 3.832	V
v por	BOR 检测电压 (掉电过程)			2		
Trsttempo	复位持续时间			10		ms
		2.05 2 10 PLS[3: 0] =0010 2.182 2.2 PLS[3: 0] =0011 2.39 2.4 2.416 PLS[3: 0] =0100 2.59 2.6 2.619 PLS[3: 0] =0101 2.79 2.8 2.822 PLS[3: 0] =0110 2.989 3.0 3.024 PLS[3: 0] =0111 3.189 3.2 3.227 PLS[3: 0] =1000 3.388 3.4 3.428 PLS[3: 0] =1001 3.588 3.6 3.63	V			
	可编程的电压检测器的电平选择	PLS[3: 0] =0011	2.39	2.4	2.416	V
		PLS[3: 0] =0100	2.59	2.6	2.619	V
		PLS[3: 0] =0101	2.79	2.8	2.822	V
V PVD		PLS[3: 0] =0110	2.989	3.0	3.024	V
		PLS[3: 0] =0111	3.189	3.2	3.227	V
		PLS[3: 0] =1000	3.388	3.4	3.428	V
		PLS[3: 0] =1001	3.588	3.6	3.63	V
		PLS[3: 0] =1010	3.788	3.8	3.832	V

	PLS[3: 0] =1011	3.987	4.0	4.034	V

4.2.4 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。

微控制器处于下列条件:

- (1) 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——VSS(无负载)。
 - (2) 所有的外设都处于关闭状态,除非特别说明。
 - (3) 闪存存储器的访问时间调整到 fHCLK 的频率。
 - (4) 当开启外设时: fpclk = fhclk。
 - (5) VDD=5V_o
 - (6) 温度为室温。

运行模式 (Run), 睡眠 (SLEEP) 和深度睡眠 (DEEP SLEEP) 下的典型电流消耗

		条件			典型		
符号	模式	General	f_{HCLK}	Fetch from	使能所有外设	 关闭所有外设 	单位
I _{DD}	Run	内部时钟源	96M	Flash memory	34	20	mA
I _{DD}	SLEEP	内部时钟源	96M	Flash memory	25.6	11.5	mA
I _{DD}	DEEP SLEEP	内部时钟源	96M	Flash memory	25.6	8.8	mA

1. 由设计保证,不在生产中测试

低功耗模式 Stop 状态的典型电流消耗

符号	参数	条件	典型值	单 位
I _{DD}	Stop	LSI 开启,LPTIM 使能	6.1	uA
	'	LSI 关闭	3.8	

1. 由设计保证,不在生产中测试

从低功耗模式唤醒的时间

下表列出的唤醒时间是在内部时钟唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- (1) SLEEP 或 DEEP SLEEP 模式:时钟源根据实际设置决定。
- (2) STOP 模式:使用的时钟源为 LSI。

符号	参数	条件	典型值	单位
TLPIDLE	从 SLEEP 模式唤醒	使用时钟为 HSI	20	ns
T _{LPSLEEP}	从 DEEP SLEEP 模式唤醒	使用时钟为 HSI	200	ns
TLPSTOP	从 STOP 模式唤醒	LPTIM 作为唤醒源	15	us

1. 由设计保证,不在生产中测试

4.2.5 内部时钟源特性

下表中给出的特性参数是使用环境温度和供电电压符合通用工作条件测量得到。

高速内部 (HSI) 振荡器

符号	参数	条件	最小值	典型值	最大 值	单位
f _{HSI}	频率	V _{DD} =5V		48		MHz

ACC _{HSI}	HSI 时钟精度	V _{DD} =5V, TA = -40°C~ 105°C	-2.5	+2.5	%
, rec _{usi}	HSI 的刊稿度	V _{DD} =5V, TA = 25°C	-1	+1	%

注: 以上结果为 VDD=5V 时测得,芯片出厂时在内部烧录了 VDD 为 2.2V~5V 的 HSI 校准值,当芯片在非 5V VDD 下工作时,建议调用固件库中的 HSI 校准函数调整 HSI 校准值,以获得更高的 HSI 时钟精度。

低速内部 (LSI) 振荡器

符号	参数	条件	最小值	典型值	最大值	单位
f _{LSI}	频率	V _{DD} =5V		32.768		KHz
		V _{DD} =2.5~5V,				
		TA = -40°C~	-5		+5	%
ACC _{LSI}	LSI 时钟精度	105°C				
		V _{DD} =5V, TA =	-1		+1	%
		25°C			T 1	/0
Total	101户部时间(具体配置)	V _{DD} =5V, TA =		260		116
Tstab _(LSI)	LSI 启动时间 (最快配置)	25°C		200		us
IDD .	I CI Th‡Ŧ	V _{DD} =5V, TA =		2.3		
IDD _(LSI)	LSI 功耗	25°C		2.5		uA

4.2.6 外部时钟源特性

下表中给出的特性参数是使用环境温度和供电电压符合通用工作条件测量得到。

低速外部 (LSE) 振荡器

符号	参数	条件	最小值	典型值	最大值	单位
IDD _(LSE)	LSE 功耗	V _{DD} =5V		1		mA
IDD(LSE)	LSE 切杜	TA = 25°C				IIIA
	启动时间	V _{DD} =5V				
$t_{su(LSE)}$		TA = 25°C		1		S
		LSE 默认配置				

1. 由设计保证,不在生产中测试

4.2.7 PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{PLL_IN}	PLL 输入时钟			6		MHz
D _{PLL_IN}	PLL 输入时钟占空比			50		%
f _{PLL_OUT}	PLL 倍频输出时钟		48		96	MHz
t _{lk(PLL)}	PLL 锁定时间	f _{PLL_OUT} 为96MHz		2		uS

1. 由设计保证,不在生产中测试

4.2.8 存储器特性

 符号	参数	条件	最小值	典型值	最大值	单位
t _{prog}	字节编程时间		-	6	6.5	us
t _{ERASE}	页 (512 字节) 擦除时间		-	2.6	3	ms
t _{ME}	整片擦除时间		-	35	40	ms
	供电电流	读电流	-	3.5	5.5	mA
I_{DD}		编程电流	-	1	2	mA
		擦除电流	-	1	1.5	mA
N _{END}	擦写次数		100,000	1	-	Cycles
	米付足/兄/方钳/阳	TA = 85°C	20	-	_	Years
T_DR	数据保存期限	TA = 25°C	100	-	-	Years

1. 由设计保证,不在生产中测试

4.2.9 I/O 端口特性

通用输入/输出特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{IL}	输入低电平电压	V _{DD} =5V			1.5	V
V_{IH}	 输入高电平电压 	V _{DD} =5V	3.5			V
R _{PU}	上拉等效电阻	V _{IN} =V _{SS}		40		kΩ

R_{PD}	下拉等效电阻	$V_{IN} = V_{DD}$	40		kΩ
C _{IO}	I/O 引脚的电容			11	pF

1. 由设计保证,不在生产中测试

输出驱动电流

GPIO (通用输入/输出端口) 可以吸收或输出多达 ±27mA 电流。

在用户应用中, I/O 脚的数目必须保证驱动电流不能超过给出的绝对最大额定值:

- (1) 所有 I/O 端口从 V_{DD} 上获取的电流总和,加上 MCU 在 V_{DD} 上获取的最大运行电流,不能超过绝对最大额定值 I_{VDD}。
- (2) 所有 I/O 端口吸收并从 Vss 上流出的电流总和,加上 MCU 在 Vss 上流出的最大运行电流,不能超过绝对最大额定值 Ivss。

4.2.10 NRST 引脚特性

除非特别说明,下表列出的参数是使用环境温度和 VDD 供电电压符合条件测量得到。

 符号	参数	条件	最小值	典型值	最大值	单位
$V_{\text{IL}(\text{NRST})}$	NRST 输入低电平电压	V _{DD} =5V			1.5	V
V _{IH(NRST)}	NRST 输入高电平电压	V _{DD} =5V	3.5			V
R _{PU}	上拉等效电阻	$V_{IN} = V_{SS}$		40		kΩ
V _{F(NRST)}	输入低电平持续时间		23			us

1. 由设计保证,不在生产中测试

4.2.11 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{ADCIN}	输入电压		V_{SS}		V_{DD}	V

F _{ADCCLK}	ADC 工作时钟				48	MHz
T _{ADCSTART}	ADC 开启时间				1	us
T _{ADCCONV}	转换时间(包括采样时 间)	f _{ADC_CLK} =48MHz, T _{ADCCONV} =2 个 ADC_CLK 采样+14 个 ADC 转换时 间		0.33		us
ENOB	Effective Bits	3Msps@REF=VDD		10.3		Bit
SNR	Signal to Noise Ratio	3Msps@REF=VDD		66		db
DNL	微分非线性误差				0.6	LSB
INL	积分非线性误差		_		2	LSB
E _o	偏移误差			21		mV

1. 由设计保证,不在生产中测试

4.2.12 DAC 特性

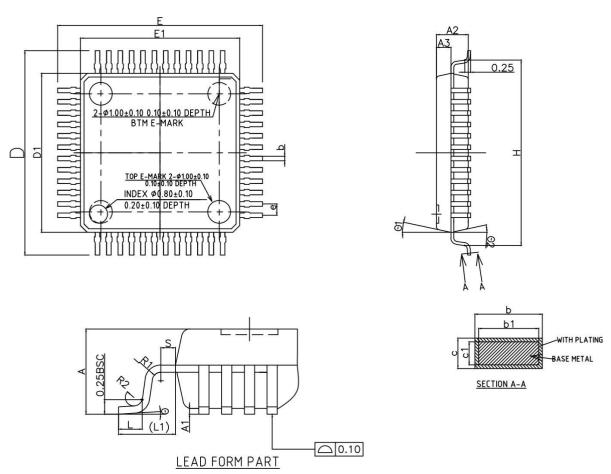
符号	参数	条件	最小值	典型值	最大值	单位
V_{DACOUT}	输出电压		V_{SS}		V_{DD}	V
SR _{DAC}	DAC 采样率				1	Msps

1. 由设计保证,不在生产中测试

4.2.13 I2C 特性

符号	参数	标准模式 (100K)		快速模式 (400K)		高速模式 (1M)		单位
		最小值	最大值	最小值	最大值	最小值	最大值	
t _{SCLL}	SCL 时钟低时间	4.7		1.3		0.5		us
t _{sclн}	SCL 时钟高时间	4.0		0.6		0.26		us

t _{su.sda}	SDA 建立时间	250	100	50	ns
t _{HD.SDA}	SDA 保持时间	0	0	0	ns
t _{HD.STA}	开始条件保持时间	4.0	0.6	0.26	us
t _{SU.STA}	重复的开始条件建立 时间	4.7	0.6	0.26	us
t _{su.sto}	停止条件建立时间	4.0	0.6	0.26	us
t _{BUF}	总线空闲(停止条件至 开始条件)	4.7	1.3	0.5	us


1. 由设计保证,不在生产中测试

SNR8652M

5 封装信息

5.1 LQFP48 封装信息

● LQFP48 塑封规格图

		毫米(mm)			
	最小值(Min) 典型值(Nom)		最大值 (Max)		
Α	_	_	1.60		
A1	0.05	_	0.15		
A2	1.35	1.40	1.45		
A3	0.59	0.64	0.69		
b	0.18	_	0.26		
b1	0.17	0.20	0.23		
С	0.13	_	0.18		
c1	0.120	0.127	0.134		
D	8.80	9.00	9.20		
D1	6.90	7.00	7.10		

SNR8652M

Е	8.80	9.00	9.20		
E1	6.90	7.00	7.10		
е		0.5BSC			
Н	8.14	8.17	8.20		
L	0.50	0.6	0.70		
L1		1.00REF			
R1	0.08	_	_		
R2	0.08	_	0.20		
S	0.20	_	_		
θ	0°	3.5°	7°		
θ1	11°	12°	13°		
θ2	11°	12°	13°		

6 修改记录

修订历史

版本	修订日期	修订内容
V1.0	2023.11.02	初始版本

7 声明

新纳捷尽力确保本产品规格书内容的准确和可靠,但是保留在没有通知的情况下,修改规格书内容的权利。客户在下订单前应联系新纳捷获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的本公司销售条款与条件。

新纳捷会不定期更新本文档内容,产品实际参数可能因型号或者其他事项不同有所差异,本文档不作为任何明示或暗示的担保或授权。

本产品规格书未包含任何针对新纳捷或第三方所有的知识产权的授权。针对本产品规格书所记载的信息,新纳捷不做任何明示或暗示的保证,包括但不限于对规格书内容的准确性、商业上的适销性,特定目的的适用性或者不侵犯新纳捷或任何第三人知识产权做任何明示或暗示保证,新纳捷也不就因本规格书本身及其使用有关的偶然或必然损失承担任何责任。

新纳捷对应用帮助或客户产品设计不承担任何义务。客户应对其使用本公司的产品和应用自行负责。为尽量减小与客户 产品和应用相关的风险,客户应提供充分的设计与操作安全验证。

针对本规格书所披露的内容,在未获得新纳捷的授权下,任何第三方不得使用、复制、转换,一经发现本公司必依法追究其法律责任,并赔偿由此对本公司造成的一切损失。

请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和 (或) 事故等的损害,本公司对此概不承担任何责任。

本公司一直致力于提高产品的质量和可靠度,但所有的半导体产品都有一定的失效概率,这些失效概率可能会导致一些人身事故、火灾事故等。当设计产品时,请充分留意冗余设计并采用安全指标, 这样可以避免事故的发生。

使用本公司的 IC 生产产品时,如因其产品中对该 IC 的使用方法或产品的规格,或因进口国等原因,包含本 IC 产品在内的制品发生专利纠纷时,本公司概不承担相应责任。